công thức tính thể tích khối nón

Trong công tác toán 12, thể tích khối nón là phần kiến thức và kỹ năng cần thiết. Dường như, những bài xích tập dượt thể tích khối nón xuất hiện nay thật nhiều trong những đề ganh đua. Hãy nằm trong VUIHOC dò xét hiểu những công thức tính thể tích khối nón nhằm hoàn toàn có thể đơn giản và dễ dàng rộng lớn trong những việc giải những bài xích tập dượt tương quan nhé!

1. Khối nón (hình nón) là gì?

Một hình được gọi là hình nón (khối nón) là khối hình hình học tập không khí 3 chiều sở hữu mặt phẳng cong và mặt phẳng phẳng lì khuynh hướng về phía bên trên. Hình nón được phân đi ra trở nên 2 phần: phần đầu nhọn là đỉnh và phần lòng đó là phần hình tròn trụ mặt mũi phẳng lì.

Bạn đang xem: công thức tính thể tích khối nón

Trong cuộc sống tất cả chúng ta tiếp tục phát hiện thật nhiều đồ dùng hình nón như: nón sinh nhật, que kem ốc quế,... 

Hình nón là gì và thể tích khối nón

Hình nón bao gồm sở hữu 3 tính chất gồm: một đỉnh hình tam giác, một phía tròn trĩnh là lòng hình nón và nó không tồn tại ngẫu nhiên cạnh nào là.

Chiều cao (h) đó là khoảng cách kể từ tâm vòng tròn trĩnh cho tới đỉnh hình nón. Hình được tạo nên vày nửa đường kính và lối cao nhập hình nón đó là tam giác vuông.

2. Các mô hình nón thông dụng hiện nay nay

Hình nón sở hữu 3 loại thông dụng nhập lúc bấy giờ, điều này tùy nằm trong nhập địa điểm của đỉnh ở nghiên hoặc ở trực tiếp.

  • Hình nón tròn trĩnh xoay: Là hình nón sở hữu đỉnh nối vuông góc với mặt mũi lòng tâm hình tròn trụ.

  • Hình nón cụt: Là hình nón sở hữu 2 hình tròn trụ tuy nhiên song nhau.

  • Hình nón xiên: Là hình nón sở hữu đỉnh ko kéo vuông góc với tâm hình tròn trụ tuy nhiên hoàn toàn có thể kéo từ là 1 điểm ngẫu nhiên tuy nhiên ko cần tâm của hình tròn trụ mặt mũi lòng.

Thể tích khối nón hình nón cụt

Vậy tính thể tích khối nón như vậy nào? Công thức tính thể tích khối nón được xem bám theo công thức nào? Các chúng ta học viên hãy nằm trong bám theo dõi phần tiếp sau nhé!

3. Công thức tính thể tích khối nón

Để tính được thể tích hình nón tất cả chúng ta sở hữu công thức tính thể tích khối nón như sau:

Thể tích khối nón tính vày 1/3 độ quý hiếm Pi nhân với bình phương nửa đường kính lòng mặt mũi nón và nhân độ cao của hình nón.

$V=\frac{1}{3}\pi R^{2}h$

Trong cơ tao có:

  • V: Thể tích hình nón
  • π: = 3,14
  • r: Bán kính 
  • h: Đường cao

Ví dụ: Tính thể tích khối nón biết khối nón có tính nhiều năm lối sinh là 5 centimet, nửa đường kính R hình tròn trụ lòng vày 3 centimet. 

Giải:

Ví dụ giải thể tích hình nón

Gọi O là đỉnh khối nón, A là vấn đề nằm trong lối tròn trĩnh lòng, H là tâm của hình tròn trụ. Ta sở hữu HA = 3 centimet, OA = 5 centimet, 

Trong tam giác vuông OHA, tính được OH

$OH=\sqrt{OA^{2}-HA^{2}}=\sqrt{5^{2}-3^{2}}=4$

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}\pi.3^{2}.4=12\pi (cm^{3})$

$V=\frac{1}{3}\pi R^{2}h = V = 12\pi = 37,68 m^{3}$

>>>Đăng ký ngay lập tức và để được thầy cô chỉ dẫn ôn tập dượt, cầm dĩ nhiên kiến thức và kỹ năng khối tròn trĩnh xoay một cơ hội đơn giản và dễ dàng nhất<<<

4. Công thức tính thể tích khối nón tròn trĩnh xoay

Thể tích khối nón tròn trĩnh xoay được xem vày công thức như sau:

$V=\frac{1}{3}B.h=\frac{1}{3}\pi R^{2}h$

  • B: Diện tích đáy 
  • r: Bán kính đáy 
  • h: Chiều cao hình nón

Hình nón tròn trĩnh xoay và thể tích khối nón 

5. Công thức tính thể tích khối nón cụt (hình nón cụt)

Thể tích khối nón cụt được xem vày hiệu của thể tích hình nón rộng lớn và hình nón nhỏ, như sau:

$V=\frac{1}{3}\pi (r_{1}^{2}+r_{2}^{2}+r_{1}.r_{2})$

  • V: Thể tích hình nón cụt
  • $r_{1}, r_{2}$: Bán kính 2 đáy
  • h: Chiều cao 

Thể tích khối nón cụt

6. Công thức tính diện tích S xung xung quanh hình nón

Chúng tao đang được biết công thức tính thể tích khối nón, hình nón cụt, hình nón tròn trĩnh xoay. Và nhằm tính diện tích S xung xung quanh hình nón, tao cấn tính diện tích S những mặt mũi xung xung quanh, xung quanh hình nón và ko bao hàm diện tích S lòng.

Diện tích xung xung quanh hình nón và thể tích khối nón 

Công thức diện tích S xung xung quanh hình nón được xem bám theo công thức sau:

Sxq = π.r.l

Trong đó:

  • Sxq: Diện tích xung quanh
  • r: Bán kính đáy 
  • l: Độ nhiều năm lối sinh

Nắm hoàn toàn tuyệt kỹ học tập xuất sắc Toán 12, khẳng định 9+ vào cụ thể từng kỳ ganh đua trung riêng rẽ nhờ cỗ bí mật độc quyền của VUIHOC ngay!!!

7. Cách xác lập lối sinh, lối cao và nửa đường kính đáy

  • Đường cao h là khoảng cách kể từ tâm mặt mũi lòng cho tới đỉnh hình chóp.

  • Đường sinh l là khoảng cách từ là 1 điểm ngẫu nhiên bên trên lối tròn trĩnh lòng cho tới đỉnh hình chóp.

Do hình nón được tạo nên trở nên khi con quay một tam giác vuông xung quanh trục một cạnh góc vuông của chính nó nên hoàn toàn có thể nửa đường kính lòng và lối cao là 2 cạnh góc vuông của tam giác, lối sinh là cạnh huyền. Nên lúc biết lối cao h và nửa đường kính lòng, tao tính được lối sinh vày công thức như sau:

$l = \sqrt{r^{2}+h^{2}}$

Biết nửa đường kính và lối sinh, tao tính lối cao:

$h = \sqrt{l^{2}-r^{2}}$

Khi tao được biết lối cao và lối sinh, tao tính nửa đường kính lòng bám theo công thức sau:

$r = \sqrt{l^{2}-h^{2}}$ 

8. Một số bài xích thói quen thể tích khối nón kể từ cơ phiên bản cho tới nâng cao

Bài 1: Cho khối nón sở hữu đỉnh là O có tính nhiều năm lối sinh vày 5 centimet, nửa đường kính hình tròn trụ lòng là 3 centimet. Tính thể tích khối nón.

l = 5 centimet R = 3 cm 

Gọi O là đỉnh khối nón

H là tâm hình tròn

A là vấn đề nằm trong lối tròn trĩnh đáy

Theo đề bài xích tao sở hữu OA = 5 centimet, HA = 3 cm

Trong tam giác vuông OHA, có:

$OH=\sqrt{OA^{2}-HA^{2}}=\sqrt{5^{2}-3^{2}}=4$

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}\pi.3^{2}.4=12\pi (cm^{3})$

Xem thêm: Xoilac TV bảng xếp hạng bóng đá Ý và các giải đấu hàng đầu châu lục mới nhất

Thể tích khối nón là: $37,68 cm^{3}$

Bài 2: Tính thể tích khối nón? thạo tứ diện đều ABCD sở hữu đỉnh A và sở hữu lối tròn trĩnh lòng là lối tròn trĩnh nước ngoài tiếp tam giác BCD và những cạnh vày a. 

Bài giải :

Gọi O là tâm lối tròn trĩnh nước ngoài tiếp tam giác BCD, tao sở hữu AO = h, OC = r như hình bên

Giải ví dụ thể tích khối nón

$\Rightarrow r=\frac{2}{3}.\frac{a\sqrt{3}}{2}=\frac{a\sqrt{3}}{3}$

Suy ra

$h= \sqrt{a^{2}-r^{2}}=\sqrt{a^{2}-(\frac{a\sqrt{3}}{2})^{2}}=\frac{\sqrt{2a}}{\sqrt{3}}$

Vậy thể tích khối nón là:

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}\pi.\frac{a^{2}}{3}.\frac{\sqrt{2}a}{\sqrt{3}}=\frac{\pi\sqrt{6}a^{3}}{27}$

Bài 3: Hãy tính thể tích khối nón khi mang đến hình nón N sở hữu góc ở đỉnh vày 60 chừng, mặt mũi phẳng lì qua chuyện trục của hình nón, rời hình nón bám theo một tiết diện là tam giác sở hữu nửa đường kính lối tròn trĩnh nước ngoài tiếp tam giác vày 2.

Bải giải :

Tam giác SAB đều, sở hữu góc S vày 60 chừng, SA = SB. Trọng tâm tam giác là tâm của lối tròn trĩnh nước ngoài tiếp tam giác SAB.  

Phương pháp giải thể tích khối nón

Ta sở hữu nửa đường kính lối tròn trĩnh nước ngoài tiếp tam giác SAB là:

$r=\frac{2}{3}SO=2\Leftrightarrow SO=3$

Mà SO=SA.sin 60o 

$\Rightarrow SA=\frac{SO}{Sin 60^{\circ}}$

$=\frac{3}{\frac{\sqrt{3}}{2}}=2\sqrt{3}$

Bán kính của lối tròn trĩnh khối nón là:

$R=\frac{AB}{2}=\frac{2\sqrt{3}}{2}=\sqrt{3}$

Ta vận dụng công thức tính thể tích khối nón như sau :

$V=\frac{1}{3}\pi(\sqrt{3})^{2}.3=3\pi$

Vậy V khối nón là: 3 x 3.14 = 9,42 Cm3

Bài 4: Cho khối nón có tính nhiều năm lối sinh vày 5cm, nửa đường kính hình tròn trụ lòng là 3cm. Tính thể tích khối nón. Với l = 5 centimet, R = 3 cm

Giải

Gọi O là đỉnh khối nón

      H là tâm hình tròn 

      A là vấn đề nằm trong lối tròn trĩnh đáy

OA = 5cm, HA = 3cm

Trong tam giác vuông OHA,

$OH=\sqrt{OA^{2}-HA^{2}}=\sqrt{5^{2}-3^{2}}=4$

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}\pi.3^{2}.4=12\pi (cm^{3})$

Bài 5: Cho ABC vuông bên trên A, AB = 8cm, BC = 10cm, Tính thể tích khối tròn trĩnh xoay tạo nên trở nên khi mang đến lối vội vàng khúc

a) Ngân Hàng Á Châu ACB xoay quanh AB.

b) ABC xoay quanh AC.

Giải

Phương pháp giải thể tích khối nón

Trong tam giác vuông ABC,

$AC=\sqrt{BC^{2}-AB^{2}}=\sqrt{10^{2}-8^{2}}=6$ (cm)

a) Khi lối vội vàng khúc Ngân Hàng Á Châu ACB xoay quanh AB tao được hình nón sở hữu độ cao h=AB=8(cm), nửa đường kính R=AC=6(cm).

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}.6^{2}.8=96\pi (cm^{3})$

b) Khi lối vội vàng khúc ABC xoay quanh AC tao được hình nón sở hữu độ cao h = AC = 6(cm), nửa đường kính R = AB = 8(cm).

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}\pi.8^{2}.6=128\pi (cm^{3})$

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng suốt thời gian học tập kể từ tổn thất gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập bám theo sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học đến lớp lại cho tới lúc nào hiểu bài xích thì thôi

⭐ Rèn tips tricks chung bức tốc thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền nhập quy trình học tập tập

Đăng ký học tập demo free ngay!!

Xem thêm: cấu trúc thì hiện tại tiếp diễn

Trên đó là toàn cỗ kiến thức và kỹ năng và công thức về thể tích khối nón. Hy vọng rằng sau nội dung bài viết, chúng ta học viên hoàn toàn có thể vận dụng công thức Toán hình 12 nhằm giải những bài xích tập dượt thiệt đúng đắn. Để học tập và ôn tập dượt nhiều hơn nữa những phần kiến thức và kỹ năng lớp 12, hãy truy vấn ngay lập tức nền tảng học tập online Vuihoc.vn và ĐK khóa huấn luyện ngay lập tức kể từ hôm nay!

>> XEM THÊM:

  • 12 Công thức tính thể tích khối chóp kèm cặp ví dụ cụ thể
  • Công thức tính thể tích khối lăng trụ đứng và bài xích tập 
  • Công thức tính thể tích khối cầu thời gian nhanh và đúng đắn nhất
  • Công thức tính thể tích khối tròn trĩnh xoay và bài xích tập dượt vận dụng
  • Công thức tính thể tích khối lăng trụ tam giác đều và bài xích tập
  • Công thức tính thể tích khối trụ tròn trĩnh xoay và bài xích tập
  • Công thức tính thể tích khối nón tròn trĩnh xoay và bài xích tập